午夜三级做爱黄片,午夜福利小视频,午夜国产成人精品,午夜黄色在线视频 - www.atkqc.com

由于操作過(guò)于頻繁,請(qǐng)點(diǎn)擊下方按鈕進(jìn)行驗(yàn)證!

從工業(yè)4.0看物聯(lián)網(wǎng)與人工智能發(fā)展

近年來(lái)隨著網(wǎng)絡(luò)的快速發(fā)展密巷,無(wú)所不在的終端設(shè)備與傳感器進(jìn)入我們的生活,加上云端運(yùn)算虛擬化技術(shù)與服務(wù)型商業(yè)模式的興起,讓計(jì)算機(jī)運(yùn)算資源改以服務(wù)形式县习,經(jīng)由互聯(lián)網(wǎng)直接取得,重新塑造信息產(chǎn)業(yè)供應(yīng)鏈谆趾,在這個(gè)潮流下躁愿,物聯(lián)網(wǎng)(Internet of Things,IoT)無(wú)疑是眼下最熱門的話題之一沪蓬,隨著傳感器的迅速普及彤钟,通過(guò)傳感器收集的巨量資料(Big Data)經(jīng)過(guò)云端服務(wù)存儲(chǔ)及巨量數(shù)據(jù)的分析,以數(shù)據(jù)驅(qū)動(dòng)服務(wù)價(jià)值跷叉,將是未來(lái)采用的技術(shù)創(chuàng)新逸雹,更是將引領(lǐng)下一個(gè)產(chǎn)業(yè)革命的典范轉(zhuǎn)移,成為未來(lái)企業(yè)新的商業(yè)模式性芬。

工業(yè)4.0看物聯(lián)網(wǎng)與人工智能發(fā)展

物聯(lián)網(wǎng)與人工智能

物聯(lián)網(wǎng)是一個(gè)基于互聯(lián)網(wǎng)峡眶、傳統(tǒng)電信網(wǎng)等信息承載體,讓所有能夠被獨(dú)立尋址的普通物理對(duì)象實(shí)現(xiàn)互聯(lián)互通的網(wǎng)絡(luò)植锉。物聯(lián)網(wǎng)一般為無(wú)線網(wǎng)骡榨,而由于每個(gè)人周圍的設(shè)備可以達(dá)到一千至五千個(gè),所以物聯(lián)網(wǎng)可能要包含500兆至一千兆個(gè)物體奕截。在物聯(lián)網(wǎng)上寻僧,每個(gè)人都可以應(yīng)用電子卷標(biāo)將真實(shí)的物體上網(wǎng)聯(lián)結(jié),所以從物聯(lián)網(wǎng)的定義來(lái)看噪境,智能電話堪渠、可穿戴設(shè)備丧忍、汽車、住房陶握、消費(fèi)類電子產(chǎn)品参挨、醫(yī)療設(shè)備、工廠設(shè)備等城市基礎(chǔ)設(shè)施禁歧,都可成為一個(gè)端點(diǎn) (Thing)亮蜓,因此物聯(lián)網(wǎng)會(huì)產(chǎn)生巨量的數(shù)據(jù)。

另一方面自從IBM 的超級(jí)計(jì)算機(jī) Watson 在 2011 年于在美國(guó)著名的知識(shí)答題節(jié)目“危險(xiǎn)邊緣”架独,力挫兩位頂尖人類選手挠囚,成為當(dāng)時(shí)冠軍,人工智能再度受到各方的關(guān)注脖旱。Watson 具備自然語(yǔ)言理解能力堪遂,還具有語(yǔ)義分析的能力,能分清反諷萌庆,雙關(guān)等特定語(yǔ)言現(xiàn)象溶褪。而這是構(gòu)筑人工智能的重要技術(shù)“機(jī)器學(xué)習(xí)”的進(jìn)化應(yīng)用∮欢担“機(jī)器學(xué)習(xí)”是從巨量的數(shù)據(jù)庫(kù)數(shù)據(jù)中探勘構(gòu)造一個(gè)模型竿滨,定義不同的參數(shù),而學(xué)習(xí)這件事就是讓這個(gè)模型以程序的方式執(zhí)行捏境,利用測(cè)試數(shù)據(jù)(Training Data)來(lái)調(diào)整優(yōu)化這些參數(shù),等到訓(xùn)練樣本到一定的程度后毁葱,參數(shù)的定義也成熟了垫言,這支程序就可以做預(yù)測(cè)。而隨著取得的數(shù)據(jù)愈來(lái)愈龐大倾剿,傳統(tǒng)的機(jī)器學(xué)習(xí)算法行不通筷频,必需要能夠自行學(xué)習(xí)知識(shí)而無(wú)須人工干預(yù),這就是后來(lái)大家所熟知的深度學(xué)習(xí)領(lǐng)域前痘。

對(duì)于物聯(lián)網(wǎng)領(lǐng)域來(lái)說(shuō)涯馆,首先要做的事情就是讓設(shè)備可以連接,但是在設(shè)備連接上之后崎爽,人工智能就變得很重要俺埋,因此單純使用網(wǎng)絡(luò)將人和裝置鏈接是不夠的,關(guān)鍵是要擁有足夠的人工智能摹撰,解析鏈接后帶來(lái)的巨量數(shù)據(jù)俄脂,才能不需要太多人力介入,就能產(chǎn)生具高附加價(jià)值的應(yīng)用行翘。

從工業(yè)4.0看物聯(lián)網(wǎng)與人工智能發(fā)展

物聯(lián)網(wǎng)與人工智能應(yīng)用

先舉兩個(gè)生活化的例子來(lái)看目前物聯(lián)網(wǎng)和人工智能的應(yīng)用相吭。

首先來(lái)看Google的無(wú)人車秧朝,它控制駕駛原理是通過(guò)車子四周安裝的諸多傳感器,持續(xù)不斷地收集車輛本身以及四周的各種精確數(shù)據(jù)郊拄,由車內(nèi)的處理器進(jìn)行分析和運(yùn)算噩振,再根據(jù)計(jì)算結(jié)果來(lái)控制車子行駛,并將所收集到的數(shù)據(jù)傳送到中央數(shù)據(jù)庫(kù)楚陶,提供給所有的無(wú)人車昭礁,因此每臺(tái)無(wú)人車能不斷的從云端更新數(shù)據(jù)庫(kù),學(xué)習(xí)各種突發(fā)狀況藻丢,進(jìn)而做出最佳的反應(yīng)動(dòng)作剪撬。

從工業(yè)4.0看物聯(lián)網(wǎng)與人工智能發(fā)展

另一個(gè)例子是日本SoftBank 的智能機(jī)器人Pepper,它除了機(jī)器本身的傳感器悠反、語(yǔ)音識(shí)別之外残黑,還搭載了Emotion Engine的情緒辨別系統(tǒng),和SoftBank 為了此 Engine 所建立的云端運(yùn)算服務(wù)Cocoro SB斋否,因此可以感知使用者的情緒并作出適合的舉動(dòng)梨水,并借助此云端運(yùn)算自行學(xué)習(xí)情緒能力,未來(lái)計(jì)劃能夠作為醫(yī)療照護(hù)人員茵臭、兒童保姆疫诽、老人照護(hù)或是商家店員等方面的運(yùn)用。

從工業(yè)4.0看物聯(lián)網(wǎng)與人工智能發(fā)展

除了實(shí)驗(yàn)性質(zhì)的測(cè)試外旦委,在目前產(chǎn)業(yè)方面的運(yùn)用奇徒,有在工廠設(shè)備的預(yù)測(cè)性維護(hù)和快速遠(yuǎn)程診斷、商店缨硝、營(yíng)運(yùn)場(chǎng)所資料收集運(yùn)用摩钙、農(nóng)業(yè)結(jié)合氣候和地理等數(shù)據(jù)的運(yùn)用等。

例如ThyssenKrupp Elevator 負(fù)責(zé)維護(hù)全球110萬(wàn)部以上的電梯谎拴,他們使用物聯(lián)網(wǎng)服務(wù)荚谢,將 ThyssenKrupp 的電梯內(nèi)數(shù)以千計(jì)的傳感器和系統(tǒng) (這些傳感器和系統(tǒng)會(huì)監(jiān)控從馬達(dá)溫度到樞軸對(duì)準(zhǔn)、車廂速度和電梯門運(yùn)作的一切事項(xiàng)) 連接到云端呐品。透過(guò)Microsoft Azure 機(jī)器學(xué)習(xí)服務(wù)凯挟,電梯所提供的數(shù)據(jù)會(huì)送到動(dòng)態(tài)預(yù)測(cè)性模型中,并將這些信息繪制到計(jì)算機(jī)和行動(dòng)裝置上的可用儀表板上垒汉,以便實(shí)時(shí)檢視關(guān)鍵效能指標(biāo)辱滤,透過(guò)預(yù)測(cè)性維護(hù)和快速遠(yuǎn)程診斷功能提高可靠性,現(xiàn)在淀肿,電梯本身可以教導(dǎo)技術(shù)人員如何進(jìn)行修理作業(yè)媳惦,因此可以大幅提高現(xiàn)場(chǎng)的效率,電梯的運(yùn)行時(shí)間也會(huì)大幅增加讯谎。

或在醫(yī)療方面Kaiser Permanente使用行動(dòng)技術(shù)為居家的病患提供遠(yuǎn)程監(jiān)控選擇碎员,藉此提高病患的參與和便利性灸室,同時(shí)為臨床醫(yī)生啟用更有效率的工具。他們正在測(cè)試將醫(yī)療設(shè)備 (例如血壓計(jì)倾圣、血糖儀和可穿戴的“手環(huán)”監(jiān)控器) 連接到智能手機(jī)鹿鳖。智能手機(jī)會(huì)當(dāng)做網(wǎng)關(guān)裝置來(lái)運(yùn)作,負(fù)責(zé)傳送數(shù)據(jù)給安全的云端壮莹,以便與現(xiàn)有的分析以及可在 Kaiser Permanente 數(shù)據(jù)中心執(zhí)行的數(shù)據(jù)可視化程序整合在一起翅帜。臨床醫(yī)生可以透過(guò)中央儀表板存取這些數(shù)據(jù),以獲得有關(guān)病患健康和活動(dòng)狀況的全盤且?guī)捉鼘?shí)時(shí)的了解命满,透過(guò)幾乎實(shí)時(shí)遠(yuǎn)程監(jiān)控重大生命跡象和自動(dòng)警示涝滴,增強(qiáng)對(duì)病患的照護(hù)及提高他們的安全。

未來(lái)的趨勢(shì)

早期的人工智能研究人員直接模仿人類進(jìn)行逐步的推理胶台,就像是玩棋盤游戲或進(jìn)行邏輯推理時(shí)人類的思考模式歼疮。到了1980和1990年代,利用機(jī)率和經(jīng)濟(jì)學(xué)上的概念诈唬,人工智能研究還發(fā)展了處理不確定或不完整的信息韩脏,對(duì)于困難的問題,有可能需要大量的運(yùn)算資源铸磅,也就是發(fā)生了“可能組合爆增”:當(dāng)問題超過(guò)一定的規(guī)模時(shí)赡矢,計(jì)算機(jī)會(huì)需要天文數(shù)量級(jí)的內(nèi)存或是運(yùn)算時(shí)間,這些硬設(shè)備的投資阅仔,不僅成本昂貴且對(duì)于使用者有著較高的技術(shù)門坎洁拓。

不過(guò)云端、巨量資料蛹活、物聯(lián)網(wǎng)的發(fā)展簇抑,讓人工智能研究得以進(jìn)一步商品化,近年來(lái)我們不僅看到了用于精密檢測(cè)的機(jī)器視覺系統(tǒng)匕磅、用于裝配作業(yè)的初級(jí)智能機(jī)器人系統(tǒng)和用于微型計(jì)算機(jī)的自然語(yǔ)言接口以及各種專家系統(tǒng),還在智能家居陶啥、智能大樓晃逞、車用系統(tǒng)等設(shè)備中得到了廣泛的應(yīng)用。在一定程度上這些項(xiàng)目利用到了物聯(lián)網(wǎng)眉剿、巨量數(shù)據(jù)分析虽才、人工智能上的機(jī)器學(xué)習(xí)和自然語(yǔ)言理解等技術(shù),但它又不像那些傳統(tǒng)人工智能一樣团何,看了就讓人敬而遠(yuǎn)之寨都,似乎只是在實(shí)驗(yàn)室中的產(chǎn)品,現(xiàn)在這些技術(shù)將普遍應(yīng)用于生活家居司型、醫(yī)療照護(hù)昼接、會(huì)計(jì)爽篷,預(yù)測(cè)疫情和犯罪等,都能透過(guò)IOT x 人工智能幫忙慢睡。

企業(yè)的機(jī)會(huì)

很多人認(rèn)為個(gè)人或中小型的企業(yè)要運(yùn)用人工智能技術(shù)發(fā)展業(yè)務(wù)是困難且昂貴的逐工,但愈來(lái)愈多的業(yè)者像Microsoft Azure、Amazon AWS漂辐、IBM Watson Analytics等泪喊,都己經(jīng)提供云端機(jī)器學(xué)習(xí)的相關(guān)服務(wù),讓開發(fā)團(tuán)隊(duì)可以專注在資料的搜集髓涯、要解決的問題袒啼、判斷要“學(xué)習(xí)”什么問題,其它運(yùn)算的工作就讓機(jī)器學(xué)習(xí)這個(gè)平臺(tái)來(lái)完成纬纪,因此機(jī)器學(xué)習(xí)技術(shù)變的更易于使用蚓再、更便宜,因此經(jīng)濟(jì)部工業(yè)局也提出了工業(yè)4.0育八,一來(lái)透過(guò)物聯(lián)網(wǎng)與人工智能对途,避免因?yàn)槿惫栴}而造成的產(chǎn)業(yè)危機(jī),二來(lái)則是改善所有產(chǎn)業(yè)的生產(chǎn)力髓棋,如此锉寿,最困難昂貴的部份如網(wǎng)絡(luò)、存儲(chǔ)器趴国、機(jī)器學(xué)習(xí)等資源由云端業(yè)者提供泣虚,我們不需投入昂貴的硬設(shè)備,只要專注于IoT x人工智能的應(yīng)用债苍,發(fā)展核心新事業(yè)坠痒,發(fā)現(xiàn)新的商業(yè)機(jī)會(huì)。


聲明:本網(wǎng)站所收集的部分公開資料來(lái)源于互聯(lián)網(wǎng)咳铅,轉(zhuǎn)載的目的在于傳遞更多信息及用于網(wǎng)絡(luò)分享选阔,并不代表本站贊同其觀點(diǎn)和對(duì)其真實(shí)性負(fù)責(zé),也不構(gòu)成任何其他建議具椒。本站部分作品是由網(wǎng)友自主投稿和發(fā)布坎扰、編輯整理上傳,對(duì)此類作品本站僅提供交流平臺(tái)斧壮,不為其版權(quán)負(fù)責(zé)物虑。如果您發(fā)現(xiàn)網(wǎng)站上所用視頻、圖片蔬咬、文字如涉及作品版權(quán)問題鲤遥,請(qǐng)第一時(shí)間告知,我們將根據(jù)您提供的證明材料確認(rèn)版權(quán)并按國(guó)家標(biāo)準(zhǔn)支付稿酬或立即刪除內(nèi)容,以保證您的權(quán)益盖奈!聯(lián)系電話:010-58612588 或 Email:editor@mmsonline.com.cn混坞。

網(wǎng)友評(píng)論 匿名: